A technika fejlődése megállíthatatlannak tűnik. Már akad olyan program, ami átment a Turing-teszten. Az Amazon raktáraiban már most robotok indítják útjára a legtöbb rendelést, a Google Brain projekt képes volt YouTube videók alapján "megtanulni" a macska azonosításához szükséges készségeket, a Microsoft sem maradt le, real-time szöveges és hang alapú gépi fordítást vezet be a Skype-on. Pár éve a Google vezető közgazdásza még a statisztikust nevezte a 21. század legszexibb foglalkozásának, de nem is olyan régen úgy döntött a keresőóriás, hogy az Automatic Statistician projekt támogatásával megpróbálja a jövőben gépekre váltani a szakembereket is. A gépek egyre intelligensebbek és már nem csak a képzetlen munkaerőt fenyegetik, de vajon képesek lesznek egyszer teljesen leváltani minket?
Mi az a tudatosság?
Mind a Google, mind pedig a Microsoft újdonságai az ún. deep learning módszert alkalmazzák. Ez nem más, mint a neurális hálók vagy konnekcionista modellek egy újabb, hatékonyabb megvalósítása. Az eljárás lényege abban rejlik, hogy előre megadott reprezentációk helyett a neuronokhoz hasonló kis egységek közötti kapcsolatok erősségét állítgatják a tanulási folyamat során.
Daniel Denett karteziánus színháznak nevezi a bevett agy-elme felosztást, mely szerint az agyi folyamatok szintje mellett van egy minőségileg más szint, ez az elme. Dennett szerint teljesen felesleges feltételeznünk valami mögöttest, az elme, vagy a tudatosság nem más, mint neuronjaink működésének mellékterméke.
Ha a tudatossághoz nem kell feltételeznünk mögöttes szervezőelveket, akkor a neurális hálókban megjelenő aktivitási mintázatokra alapozott viselkedést is tekinthetjük tudatosnak. Nagyon csábító gondolat ez, hiszen leredukálhatjuk egy fizikai jelenségre (a neuronok aktivitási mintázataira) a gondolkodás világát, amit így akár emberi sejtek helyett szilíciumlapkákon is megvalósíthatunk. De mit tud egy ilyen rendszer? Milyen tudással rendelkezik?
Searle kínai szoba gondolatkísérlete egy ilyen tudatosan viselkedő gépet szimulál. Képzeljünk el egy embert, akit bezárnak egy szobába egy kínai "grammatikával", ami egy szabálykönyv arra vonatkozóan hogy adott jelekre milyen választ kell adni. A külvilággal az ajtó alatt ki-becsúsztatott kínai írásjeleket tartalmazó lapokkal kommunikálhat emberünk. Ha egy anyanyelvi beszélő elkezd társalogni emberünkkel, akkor minden kérdésére választ kap, mert egy nagyon jó szabálykönyvet adtunk a szobában tartózkodó emberünknek. A külső megfigyelő számára a szoba intelligensen viselkedik. Sőt, a józan észnek engedelmeskedve kedves kínai kísérleti alanyunk fel fogja tételezni, hogy a szobában tartózkodik egy kínaiul beszélő ember! Habár a szoba úgy viselkedik mint egy értelmes ember, valahogy nem szeretnénk intelligensnek nevezni a benne megvalósuló szabálykövetést.
A gondolkodás testesült
A redukcionizmus hatására egyre inkább elvetik a kutatók az elme és az agy kettősségét. Ugyanakkor jelentős problémát okoz annak megválaszolása, hogyan tesz rendet az agy a rázúduló információk áradatában. Hogyan lehetséges, hogy vannak közös hiteink, meg tudjuk érteni egymást, az eget kéknek látjuk stb. A hagyományos válasz szerint az elme rendezőelvei, pl. a chomskyánus univerzális grammatika és egyéb "előrehuzalozott" készségek miatt van ez így. A gépi tanulásban az ún. felügyelt módszerekkel tkp. ezt az implicit tudást adjuk át a gépeknek, amikor ún. tréningkorpuszokban jelezzük nekik pl. hogy egy adott képen van egy macska, a másikon pedig egy kutya. A neurális modellek során így épülnek fel az előre adott aktivitási mintázatok a neuronok között, melyek később természetesen a további tapasztalatoknak megfelelően átírhatóak.
Persze tekinthetjük ezeket az előzetes tudásokat a karteziánus színház visszacsempészésének is, de manapság inkább azt mondjuk az evolúció, s azon keresztül véletlenek sorozata miatt alakultak ezek ki és nincs sok közük az eredetileg feltételezett elméhez. Sokkal érdekesebb kérdés az, hogy a felügyelt tanítás során tényleg át tudjuk-e adni ezt az implicit, előzetes ismeretet a gépeknek. Ha igen, akkor képesek vagyunk mesterséges agyakat előállítani és van mitől félnünk. Thomas Nagel híres What Is it Like to Be a Bat? esszéjében azonban arra hívja fel a figyelmet, hogy a mentális állapotok kontextusfüggőek. Nem tudhatjuk milyen lehet denevérnek lenni, mert nincs olyan jó fülünk, hogy hallásunkkal tájékozódjunk, nem úgy látjuk a világot ahogyan egy denevér látja, nem tudunk repülni, stb. stb. Készíthetünk egy denevér modellt, amit mi értünk, de ezzel csak magunk számára tettük elérhetővé a denevér lététet, továbbra sem tudjuk milyen is denevérnek lenni. Ez azért van, mert a denevérséghe,z s úgy általában a mentális állapotokhoz hozzá tartozik egy ún. kválé, azaz szubjektív minőség. De honnét jön ez a kválé?
A testesült gondolkodás (embodied cognition) adja erre a legfrappánsabb választ (rövid érvek amellett hogy többek vagyunk mint csupán az agyunk itt). A kválé eredete nem más, mint az, hogy agyunk egy testhez kapcsolódik. Testünk határozza meg, hogy milyen ingerek érhetik agyunkat és milyen válaszokat adhatunk ezen ingerekre. A karteziánus cogito ergo sum ebben az elméletben átfordul "cselekszem, tehát gondolkodom"-ba.
A testesült gondolkodás nem csak egy szép elmélet, gyakorlatban is használják!
Rolf Pfeifer kutatócsoportja a robotika terén hasznosítja a testesült gondolkodás eredményeit s robotjaik révén gazdagítják tudásunkat a területről. Az EUCOG program keretében is nagy hangsúlyt fektettek az irányzat megismertetésére. Ugyanakkor a legpraktikusabb kutatásokat a MODE program végzi, hiszen ők azt vizsgálják, hogy az új információ- és kommunikációs technológiák hogyan hatnak ránk. A számítógépek, a mobilok és a hordozható kütyük ugyanis egyfajta kiterjesztéseink, kezünk, szemünk, fülünk és kitudja milyen érzékszerveink meghosszabbításai. Ha hatékony kütyüket, szoftvereket akarunk használni, akkor nem mehetünk el ezen tények mellett.
Meg kell tanulnunk a gépekkel együtt dolgozni!
Ha félnünk kell valamitől, az az, hogy nem tudunk alkalmazkodni a gépek jelentette kihívásokhoz. Az ipari forradalom óta a technológia egyre gyorsabban fejlődik, s ezzel az emberek produktivitása is jelentősen megnőtt. Ellenben a nyolcvanas évek óta a növekvő produktivitást nem követik a bérek. Brynjolfsson és McAfee The Second Machine Age című könyvében megdöbbentő grafikont találunk erről.
Ez annak köszönhető, hogy már nem csak a kékgallérosok állásait veszélyezteti a technológia. De egyben azt is jelenti, hogy az új technológiák kitalálói és kezelői egyre hatékonyabbak is! Nem a gépek győzik le az embereket, hanem gépek és emberek teremtenek soha nem látott hatékonyságot! Brynolfsson kedvenc példája Kasparov sakkbajnoksága, minek keretében nem emberek és gépek csapnak össze, hanem vegyes, gépek és emberek alkotta csapatok. Az új technológiáknak hála amatőr sakkozók és számítógépeik sokkal hatékonyabban tudnak együttműködni mint a csak gépekből vagy profi nagymesterekből álló csapatok!
A kérdés az, hogy testesült gondolkodásunk kiterjesztése az új technológiák által hogyan fog megvalósulni. A kognitív tudomány a schumpeteriánus innováció segítségére lehet megtalálni azokat az új területeket, ahol egyre több ember produktivitása növelhető úgy, hogy annak anyagi gyümölcseit minél többen élvezhessék is. A gépek eszközök, a kérdés az, kinek a kezében vannak!