Alaptézis: amíg a Python úgy vált az adattudomány és a gépi tanulás fő támaszává, addig a Julia már a kezdetektől fogva az ilyen feladatok elvégzésére készült. Ennek tükrében vizsgáljuk meg, hogy milyen előnyei vannak az egyiknek és a másiknak az adattudósok szempontjából!
A Python számos felhasználási módja közül talán az adatelemzés vált a legnagyobb és legjelentősebb területté, hiszen a Python ökoszisztéma, tele könyvtárakkal, eszközökkel és alkalmazásokkal, gyorssá és kényelmessé teszi a tudományos számítási és adatelemzési munkát. A Python azonban gyakran a Julia nyelv mögé szorul, mivel az kifejezetten a tudományos felhasználást, a gépi tanulást, az adatbányászatot, a lineáris algebrát célozza, ezzel összevetve a Python nem elég gyors és kényelmes. A Julia célja, hogy a tudósoknak és adatelemzőknek ne csak gyors és kényelmes fejlesztést, hanem villámgyors végrehajtási sebességet is biztosítson.
Mi az a Julia nyelv?
A 2009-ben, egy négy fős csapat által megalkotott Julia nyelv a Python és más, tudományos számításokhoz és adatfeldolgozáshoz használt nyelvek és alkalmazások hiányosságait hivatott orvosolni.
"Olyan nyelvet akarunk, amely nyílt forráskódú. A C sebességét akarjuk elérni a Ruby dinamizmusával. Olyan nyelvet akarunk, amely valódi makrókkal rendelkezik, mint a Lisp, de olyan ismerős matematikai jelölésekkel, mint a Matlab. Olyasmit akarunk, ami olyan jól használható általános programozásra, mint a Python, olyan egyszerű a statisztikához, mint az R, olyan természetes a karakterlánc-feldolgozáshoz, mint a Perl, olyan erős a lineáris algebrához, és természetesen olyat, amelyet rendkívül egyszerű megtanulni.” - mondták akkor a csapat tagjai.*
Julia vs. Python: Julia előnyök
A Julia nyelvet kezdettől fogva tudományos és numerikus számításokhoz tervezték, így nem meglepő, hogy számos olyan funkcióval rendelkezik, amelyek előnyösek az ilyen felhasználási esetek számára:
- a Julia gyors. hiszen már eleve úgy lett megtervezve, hogy a kezdetektől fogva gyorsabb legyen, mint optimalizálatlan Pythont
- a Julia matematika-barát szintaxissal rendelkezik, a matematikai műveletek jobban hasonlítanak ahhoz, ahogyan a matematikai képleteket a számítástechnika világán kívül írják, így a nem programozók számára könnyebben elsajátítható.
- a Julia automatikus memóriakezeléssel rendelkezik. A Pythonhoz hasonlóan a Julia sem terheli a felhasználót a memória kiosztásának és felszabadításának részleteivel.
- a Julia kiváló és éppen ezért kifinomultabb párhuzamosságot kínál, mint a Python.
- a Julia saját natív gépi tanulási könyvtárakat fejleszt, amelyek számos létező modellmintát tartalmaznak a gyakori felhasználási esetekhez. Mivel teljes egészében Julia nyelven íródott, a felhasználó igényei szerint módosítható.
Julia vs. Python: Python előnyei
Bár a Julia kifejezetten az adattudomány számára készült, a Python pedig többé-kevésbé belekerült ebbe a szerepkörbe, a Python néhány meggyőző előnyt kínál az adattudósok számára. Az okok közül néhány, amiért a Python jobb választás lehet az adattudományi munkákhoz:
- a Python nulla alapú tömbindexelést használ ellentétben a Julia-val, amely 1-es indexelést, így az általánosabb felhasználású programozáshoz szokottak közönség könnyebben elfogadja a Python-t.
- a Python-programok ugyan lassabbak lehetnek, mint a Julia-programok, de maga a Python környezetben kevesebb időbe telik, amíg a programok elindulnak és elérik az első eredményeket. Bár sokat dolgoztak azon, hogy Julia gyorsabban induljon, ezen a területen a Python még mindig előnyben van.
- a Python a Julia nyelvvel ellentétben kiforrott. A Julia csak 2009 óta van fejlesztés alatt, és azóta elég sok funkcióváltáson ment keresztül. Ezzel szemben a Python már majdnem 30 éve létezik.
- a Python sokkal több harmadik féltől származó csomaggal rendelkezik, ezek széles skálája és hasznossága továbbra is a nyelv egyik legnagyobb vonzereje, amíg a Julia relatív újdonsága azt jelenti, hogy a körülötte lévő szoftverkultúra még mindig kicsi.
- a Python-nak több millió felhasználója van, hatalmas, elkötelezett és aktív közösséget képezve. A Julia körüli közösség ugyan lelkes és folyamatosan növekszik, de még mindig csak töredéke a Python közösség méretének.
- a Python a fejlesztéseknek (beleértve a többmagos és párhuzamos feldolgozás fejlesztését) köszönhetően egyre gyorsabb, és mindemellett a Python pedig könnyebben fel is gyorsítható.
A fenti előnyök figyelembe vételével mindenki eldöntheti, hogy a Python vagy a Julia mellett teszi le a voksát. Természetesen érdemes lesz követni mindkettő esetében az újdonságokat és a frissítéseket is.
Amennyiben többet szeretne megtudni a témáról, kérjük olvassa el az Infoworld oldalán megjelent angol nyelvű cikket, amely jelen blogbejegyzésünk alapjául is szolgált!
*szabad fordítás