HTML

Precognox

 precognox-logo-cmyk-620.jpg

A blog készítői a Precognox Kft. keretein belül fejlesztenek intelligens, nyelvészeti alapokra épülő keresési, szövegbányászati, big data és gépi tanulás alapú megoldásokat.

Az alábbi keresődoboz segítségével a Precognox által kezelt blogok tartalmában tudsz keresni. A kifejezés megadása után a Keresés gombra kattintva megjelenik vállalati keresőmegoldásunk, ahol további összetett keresések indíthatóak. A találatokra kattintva pedig elérhetőek az eredeti blogbejegyzések.

Ha a blogon olvasható tartalmak kapcsán, vagy témáink alapján úgy gondolod megoldással tudunk szolgálni szöveganalitikai problémádra, lépj velünk kapcsolatba a keresovilag@precognox.com címen.

Precognox Blogkereső

Document

opendata.hu

opendatahu45.jpg

Az opendata.hu egy ingyenes és nyilvános magyar adatkatalógus. Az oldalt önkéntesek és civil szervezetek hozták létre azzal a céllal, hogy megteremtsék az első magyar nyílt adatokat, adatbázisokat gyűjtő weblapot. Az oldalra szabadon feltölthetőek, rendszerezhetőek szerzői jogvédelem alatt nem álló, nyilvános, illetve közérdekű adatok.

Facebook oldaldoboz

Blog figyelése (RSS)

 Add hozzá az RSS olvasódhoz

Ha levélben szeretnél értesülni az új cikkekről:

Star Wars text mining

visualizing_star_wars_movie_scripts_precognox.jpgA long time ago, in a galaxy far, far away data analysts were talking about the upcoming new Star Wars movie. One of them has never seen any eposide of the two trilogies before, so they decided to make the movie more accessible to this poor fellow. See more...

Főbb témák

adat (8) adatbányászat (11) adatelemzés (9) adatok (13) adatújságírás (16) adatvizualizáció (19) AI (19) alternatív (6) alternatív keresőfelület (28) analitika (6) beszédtechnológia (13) big data (55) bing (14) blogkereső (6) CEU (6) clustering (6) conTEXT (8) dashboard (6) data science (9) deep learning (18) egészség (7) egészség kereső (7) előadás (7) emócióelemzés (35) Facebook (9) facebook (8) gépi tanulás (18) Google (33) google (59) gyűlöletbeszéd (7) hackathon (10) hálózatelemzés (14) intelligens keresés (6) internetes keresés (35) internet hungary (6) képfeldolgozás (8) képkereső (8) keresés (87) kereséselmélet (8) keresési felület (6) keresés jövője (57) keresés problémái (41) keresők összehasonlítása (9) keresőmotor (16) keresőoptimalizálás (8) kereső szándéka (11) kereső tanfolyam (9) kereső teszt (15) kognitív nyelvészet (12) konferencia (46) könyvajánló (25) korpusznyelvészet (14) közösségi keresés (8) közösségi média (8) különleges keresők (7) kutatás (9) LDA (10) lda (10) live (13) machine learning (9) magyar kereső (9) marketing (8) meetup (41) mesterséges intelligencia (19) metafora (7) mobil (37) mobil keresés (17) Neticle (9) NLP (8) NLP meetup (17) Nuance (9) nyelv (7) nyelvészet (32) nyelvtechnológia (76) open data (12) open knowledge (7) orosz (6) Pennebaker (6) politikai blogok (22) Precognox (65) Precognox Labs (14) Python (14) R (19) spam (6) statisztika (12) számítógépes nyelvészet (9) szemantikus keresés (19) szemantikus kereső (9) szentimentelemzés (37) szöveganalitika (7) szövegbányászat (22) társadalomtudomány (7) tartalomelemzés (56) tartalomjegyzék (6) tematikus kereső (20) topik modellek (6) twitter (15) Twitter (18) vállalati kereső (7) vertikális kereső (9) vizualizáció (13) yahoo (27) Címkefelhő

A blog tartalmai CC licenc alá tartoznak

Creative Commons License
Kereső Világ by Precognox Kft. is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at http://kereses.blog.hu/.
Permissions beyond the scope of this license may be available at http://precognox.com/.

A Kereső Világ blogon közölt tartalmak a Precognox Kft. tulajdonát képezik. A tartalom újraközléséhez, amennyiben nem kereskedelmi céllal történik, külön engedély nem szükséges, ha linkeled az eredeti tartalmat és feltünteted a tulajdonos nevét is (valahogy így: Ez az írás a Precognox Kft. Kereső Világ blogján jelent meg). Minden más esetben fordulj hozzánk, a zoltan.varju(kukac)precognox.com címre írt levéllel.

Creative Commons License

Nevezd meg! - Ne add el! - Ne változtasd!

 

Watson, aki törődik az érzéseinkkel

2017.09.26. 09:36 Szerző: Szabó Martina Katalin Címkék: konferencia orosz szótár pszichológia narratíva korpusz szemantikus keresés nyelvtechnológia IBM Watson szentimentelemzés emócióelemzés Pennebaker funkciószavak

Amint azt a Portfolio hírül adta, az IBM által fejlesztett, Watson névre keresztelt robot újabban már az emberi érzelmeket is felismeri. A cég egy különleges megkeresésre fejlesztette tovább Watsont úgy, hogy az a lelkünkbe láthasson.

robotlove-1024x576.jpg

Az egész a Wells Fargo tavaly kirobbant számlabotrányával kezdődött. Az Egyesült Államok egyik legnagyobb bankjának alkalmazottai, amint az a vizsgálatok során kiderült, az utóbbi öt évben kétmillió betéti és hitelkártyaszámlát létesítettek klienseiknek anélkül, hogy azok tudtak volna erről. A csalásra az csábította a dolgozókat, hogy a nagyobb teljesítmény, vagyis a több termék értékesítése nagyobb bónuszt hozott nekik a kasszára. 

A Világgazdaság adatai alapján a Wells Fargo 2011 óta nagyjából 5300 alkalmazottat bocsátott el, noha közülük csak több százan voltak, akik illegálisan nyitottak számlát. Sokan – köztük vezető beosztásban lévők – azért kaptak útilaput, mert szemet hunytak a csalások felett.   

A botrány után a hitelintézetekben jelentős igény támadt az alkalmazottak alaposabb monitorozására abból a célból, hogy egy esetleges hasonló csalássorozatot el lehessen kerülni. Az International Business Machines Corporationt (IBM) is megkeresték azzal a kérdéssel, hogy lehetséges-e a lakossági üzletágban dolgozó értékesítőket, hitelügyintézőket és más dolgozókat valamilyen módon behatóbban megfigyelni. Az IBM úgy gondolta, Watsonra bízza a piszkos munkát. 

4fbe91716bb3f7c20900001c-618.jpg

Watson, a mesterséges intelligencia kinézete (forrás: businessinsider.com)

Watson akkor vált igazán híressé, amikor 2011-ben a Jeopardy! nevű televíziós vetélkedőben – amely hasonló a hazai Mindent vagy semmit! című játékhoz – két kiváló képességű játékost legyőzött.

A mérkőzésre a vetélkedő két legsikeresebb hajdani résztvevőjét hívták meg: Brad Ruttert, aki a játék történetében az addigi legnagyobb nyeremény birtokosa, és Ken Jenningst, aki pedig a leghosszabb ideig, összesen nem kevesebb mint 75 napig tartotta magát folyamatos játékban. Az összecsapás során Watsonnak a versenytársakkal azonos körülményeket biztosítottak: nem csatlakozhatott az internethez, és a kérdéseket a játékvezetőtől ő is élőszóban kapta. A szuperszámítógép végül 1 millió, Ken Jennings 300 000, Brad Rutter pedig 200 000 amerikai dollárt nyert.

Az IBM már a Wells Fargo megkeresése előtt is bevetette a banki szférában Watsont: a banki kereskedőket vizsgálta, amit több nagybank, illetve kisebb regionális pénzintézet is tesztelt. Ésszerű döntés volt tehát, hogy most is ő kapja a feladatot, akinek már van a területen szerzett tapasztalata. 

Előbb azonban a cég továbbképzésre küldte Watsont: megtanították őt az olyan adatoknak az észrevételére, amelyek a Wells Fargo-ban történt botrány előjeleiként értelmezhetőek. Ennek köszönhetően felfigyel a gyanús logókra, a használatlan termékekre és számlákra, valamint a rossz adatokra és értesítési kérésekre.

images_1_1.jpgDe ez messze nem minden: Watson elolvassa az alkalmazottak emailjeit és megvizsgálja még a telefonhívásokaikat is. Olyan nyomokat keres az írott és a hangzó szövegekben, amelyek valamilyen nem megfelelő viselkedésre (pl. a menedzsereknek az értékesítési csapatra gyakorolt, nem kívánatos jellegű és mértékű nyomására) utalhatnak a dolgozói rendszerben. 

 

 

És csak most jön a java: Watson még egyes érzelmek felismerésére is képes! Meg tudja például állapítani, ha egy munkatárs mérges, undorodik valamitől, fél, örül, szomorú, vagy éppen agresszív. Amint ugyanis arra a Portfolio is rámutat, az emóciók kiváló indikátorai lehetnek a gyanús viselkedésnek. A cikk két érdekes tendenciát említ példaként. Egy amerikai tapasztalat szerint a legendásan trágár amerikai kereskedők profánsága jelentősen csökken, mielőtt valami illegálisat cselekszenek. Az Egyesült Királyságban ugyanakkor ennek pont az ellenkezőjét tapasztalták: az etikátlan viselkedésre készülő kereskedők többet káromkodnak a séma kivitelezése előtt.

Azt, hogy Watson mennyire hatékonyan ismeri fel az érzelmeket az írott szövegekben, bárki tesztelheti az eszköz honlapján, egy demo program segítségével. Az elemezni kívánt szöveget a megfelelő formátumban fel kell töltenünk, majd azt az elemző a következő fő lépésekben feldolgozza:

tone-analyzer.png

Az elemzés lépései (forrás: ibm.com)

Mindezek után, egy tetszőlegesen bevitt, angol nyelvű szöveget elemeztetve az alábbihoz hasonló eredményt kapunk:


wa2.png

Egy példa Watson elemzési eredményeire, írott szöveg alapján (forrás: ibm.com)
Amint azt a Portfolio ugyanakkor megjegyzi, Watson elemzése sajnos rengeteg hamis pozitívot generál. Éppen ezért a találatokat legtöbbször humán erő bevonásával felül kell vizsgálni.


Saját emócióelemzésünk, avagy amit mi csinálunk...

Amint arról már többször beszámoltunk a blogon, magunk is foglalkozunk automatikus emócióelemzéssel, és sokat dolgozunk azon, hogy az eszközünket jobbá és jobbá tegyük. Lássuk csak, mit is csináltunk eddig!

Először is, pszichológiai eredményekre alapozva készítettünk egy magyar nyelvű emóciószótárat, majd azt a létrehozás és a vizsgálati tapasztalataink alapján továbbfejlesztettük. Emellett elkészítettünk egy kézzel annotált emóciókorpuszt is, amelyben nem csupán az ominózus emóciókifejezéseket jelöltük be, hanem minden olyan egyéb nyelvi elemet, amelyről úgy gondoltuk, hogy mind vizsgálati, mind fejlesztési szempontból hasznos lehet a későbbiekben.

A szótárainkat (annak első és második verzióját) számtalan automatikus tartalomelemzési feladatban felhasználtuk, és munkánk során érdekes, eleddig ismeretlen összefüggéseket tártunk fel az érzelmek, a szentimentek és a különböző egyéb szövegtartalmak (pl. a topikok) között. Eredményeinket sok konferencián (pl. Nyelv, kultúra, társadalom;  MANYE; OSINT; Media Hungary; MSZNY stb.) és számos posztban ismertettük. Szonifikáltunk, dashboardot készítettünk romaellenes cikkekből, demóztunk szüléssel kapcsolatos interjúk alapján, meg egy csomót politizáltunk. Még multimodális emócióelemzést is végeztünk a céges hackathonon ‒ csak néhányat említve közülük. 


love.jpg

 

És amin jelenleg dolgozunk...

A magyar nyelvű elemzések után úgy döntöttünk, megnézzük, mi a helyzet az orosz fronton. Létrehoztunk egy orosz nyelvű emóció-, valamint szentimentszótárat, továbbá egy nagy méretű, orosz nyelvű szépirodalmi szövegekből álló korpuszt. Munkatársunk, Nyíri Zsófi azon dolgozik, hogy a korpusz automatikus, emóció- és szentimentszótáras elemzésével feltárja az orosz szépirodalmi művek narratívatípusait. Munkájának eddigi, érdekes tapasztalatairól a II. Szláv Filológiai és Kultúratudományi Konferencián számolt be nem rég. 

A projekt egy távolabbi, ugyanakkor fontos célja, hogy kísérletet tegyen a nyelvi emóciók párhuzamos vizsgálatára magyar, orosz, valamint angol nyelvű szövegekben.  

Ugyancsak ehhez a projekthez kapcsolódóan azon is munkálkodunk, hogy a funkciószók és az emóciók közötti, eleddig rejtett összefüggéseket is feltárjuk. Korábban már posztoltunk arról, hogy, bár a funkciószók kiváló indikátorai lehetnek bizonyos, úgymond a szöveg "mélyebb rétegeiben húzódó" sajátságoknak, azokat a tartalomelemző feladatokban nemigen aknázzák ki a nyelvtechnológusok. 

De miért is irányítsuk figyelmünket a funkciószókra a tartalomelemzésben? Miért ne csupán azokra a bizonyos tartalmas szavakra fókuszáljunk?

brain_map.jpgAmint azt már az említett posztban is ismertettük, a szociálpszichológus Pennebaker 2011-ben publikált könyve, a The Secret Life of Pronouns alapján, a nyelvhasználat során tudatosan alapvetően a tartalmas szavakra fókuszálunk. Ez azt jelenti, hogy amikor szövegeket alkotunk, kevésbé vagyunk megfontoltak a funkciószók használatát illetően; inkább a közölni kívánt szemantikai tartalomra, így szükségképpen elsősorban a tartalmas szavakra koncentrálunk. Ugyanakkor a kommunikációnk során a funkciószó-használatunkkal tudattalanul is olyan információkat közlünk magunkról, mint például a nemünk, a korunk, a szociális viszonyaink vagy az aktuális érzelmi állapotunk ‒ amelyeket esetleg egyáltalán nem is szerettünk volna a partner tudomására hozni. Pennebaker szerint tehát a funkciószó-használatunk az érzelmi állapotunkról is árulkodik, vagyis ezeknek a szöveges realizációja szorosan összefügg a beszélő emócióival. 

f1112d_b.gifEzzel együtt, amint arra a szerző felhívja a figyelmet, a 20 leggyakoribb előfordulású angol szó között kizárólag funkciószókat találunk, s pusztán ez a húsz elem megközelítőleg a 30%-át teszi ki az angol nyelvi produktumoknak, az írott és a beszélt nyelvet illetően egyaránt.

A kérdést a magyar nyelv vonatkozásában, a Magyar Nemzeti Szövegtár adatait megnézve hasonló eredményt kapunk: a 20 legyakoribb szó között a magyar nyelvet illetően is, akárcsak az angolban, rendre funkciószókat találunk. 

A funkciószók vizsgálatától, különösen az emócióelemzéssel együtt alkalmazva igazán figyelemre méltó összefüggések feltárását remélhetjük. 

Jelenleg tehát azon dolgozunk, hogy az orosz nyelvű korpuszunkban végrehajtsuk az emóciók, a funkciószók és a szentimentek komplex feldolgozását.  

 

 

 

A Kereső Világ a Precognox Precognox szakmai blogja A Precognox intelligens, nyelvészeti alapokra építő keresési, szövegbányászati és big data megoldások fejlesztője.

Szólj hozzá! • Kövess Facebookon • Iratkozz fel értesítőre

A bejegyzés trackback címe:

https://kereses.blog.hu/api/trackback/id/tr2312819708

Kommentek:

A hozzászólások a vonatkozó jogszabályok  értelmében felhasználói tartalomnak minősülnek, értük a szolgáltatás technikai  üzemeltetője semmilyen felelősséget nem vállal, azokat nem ellenőrzi. Kifogás esetén forduljon a blog szerkesztőjéhez. Részletek a  Felhasználási feltételekben és az adatvédelmi tájékoztatóban.

Nincsenek hozzászólások.
süti beállítások módosítása